Lecture 4

Angular Momentum and
Rigid-Rotor Models and
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I- review of basic tools: Commutation

A,B,
A,B,

A,BC

KA,B]=
A,B+C
A+B,C

AB,C.

AB,

AB,
A,C

A,C

=AB-BA
=-[B,A]
A,KB]=K[A,B]
A,C
B,C

+
+
C+B
B+A

A,C

B.C



lI- Basic definition
Angular Momentum (L)
L =rxp
Magnitude: L = rpsin(f)

Circular Motion: | = rpsin(90°) = rp

Vv
or: L:rp:rmv:(mrz)(—j:(mrz)a)
I
5 V
| = |p wWhere | = mr 0= —
I
Moment  Angular

of Inertia Frequency

Energy
2 2 2 2 2 2 2 2
E:p:mv :m(ra)):mra)zla) c)r:E:(Ia)):L
2m 2 2 2 2 21 21
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Modification: Rotation of two masses about Center of Mass

: ‘
’ r
| =mr | = yr?
m1m2
where U=
m, +m,
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Comparison of Equations for Linear and Circular Motion

Mass

Velocity

Momentum

Energy

or

Linear Motion

m

\Y

Circular Motion

Moment of inertia

Angular velocity

Angular momentum

Energy

Energy
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3-Quantum Mechanics treatment of Angular
Momentum

F= i +yj+ 2k f=pi+p, ]tk
ﬁ R Dy, )T () T (00, -y, K
L=rxp =|X Yy Z L, =12p, - Xp, L, =yp, - 1p, L=, - yp,
P, P, P,
h 0 0 : 0
- L= L, —|h(y——z—]
=T o oz 0y
v =Eﬂ —lhi LZ:—ih(xa - aj
iy 0y 0y = OX
o=t lin s R T T
| 01 01
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3.10perator Commutation and Simultaneous Eigenfunctions

It can be shown that:
" } £ 0 Do not commute

.0 |=in, | C,C | =—inL, | (.0 |=inL, | L0 |=-inL,

Because the operators for the individual components do not commute,
one cannot determine two separate components simultaneously.

l.e. they cannot have simultaneous eigenfunctions

[ﬁx,Lz]:[ﬁy,Lz]:[I:Z,Lz]:O Do commute

Because these operators commute, one can determine L, and L?
simultaneously; i.e. they can have simultaneous eigenfunctions
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3.2 Spherical Polar Coordinates for Angular momentum

In Cartesian Coordinates, the 3D Schrddinger Equation is:

he otw  ht o'y ht Ay
- - —~ +V(X,y,2)w = E =y (X, V,1
2m ox°  2m oy*  2m 01° Xy, 2y =Ey v =y (600)

T(x) T(y) T(z)  VIXy.2z)

0 Jd 0
_|_

+
ox* oy° o1

The Laplacian in Cartesian Coordinates is:  V°

2

Therefore: —;—Vzw +V(x,y,2) = Ey
m

The “Rigid Rotor” and the Hydrogen Atom can be solved exactly
In Spherical Polar Coordinates.
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3.2 Spherical Polar Coordinates for Angular Momentum

OR= F5in® S0 X=TSind cosd, y=rsind Sing and z=r s

To specify a point in space requires three coordinates.
In the spherical polar coordinate system, they are:

r 0<r<w Distance of point from origin (OP)

6 0<0<mn Angle of vector (OP) from z-axis

d 0<¢p<2x Angle of x-y projection (OQ) from x-axis
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Relation of Cartesian to Spherical Polar Coordinates

0Q Q
y /
Z ¢
0 /r O
e v st s and 2
cos(6) = - 0Q=rsin(6)
r
X . y
l cos(p) = 00 sin(e) = 00
‘ 1=r1005(d) ‘ l l
t=00Q cos(p) y=0Qsin(p)

l l

‘ x:rsin(e)cos((p)‘ ‘ y=rsin(d)sin(g) ‘
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The Laplacian in Spherical Polar Coordinates

0 0 0

Cartesian Coordinates: V’=—+—+—
ox° oy° o1

the Laplacian in spherical polar coordinates is given by:

2
V2=18(r28j+ 1 8(sin(9)aj+ S

Crfor\ or) r’sin(9) 06 00 ) r¥sin?(0) d¢*
4V = dxdydz
GV =drerdfe0Qdyo GV =drerddorsin(d)do ‘dv =r'sin(f)drdddo
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Angular Momentum Operators in Spherical Polar Coordinates

Ezz—ih Xai_yﬁi LZ:|'Ax.|:x+LAy.LAy-I_LAZ.LAZ
y X
It may be
Isthrg\?vynk;ﬁat l Shown et
v
: - S T A L? = —7°+ in(o
0 104 sino) aa(s'”( )aej+sin2(9> a¢2}

(A2 2
LZ:—h2<a—2+cot(<9) 9, : ;L 82
00 060 sin“(0) 0¢

\

L =1i%<sin ¢£+cot6’cos¢i
06 0@

L, =-1h cos¢ﬁ—cot6?sin¢i |
06 O Slide 13



3.3 Model system. The 2D Quantum Mechanical Rigid Rotor

Assume that two masses are attached by a rigid rod (i.e. ignore
vibrations) at a fixed distance, r,and are free to rotate about
the Center of Mass in their x-y plane.

The angle ¢ represents the angle of rotation relative to the x-axis.
The 2D Schrodinger equation for the
relative motion of two masses is: \‘

2 r
—h—sz/ +Vy =Ey ¢

24

2 2

0 0 Two Dimensional Laplacian ‘
+ ) ] )

5X2 8y2 in Cartesian Coordinates \

V=

m,m
_ 1772
U=
m,+m,
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hZ
——sz/ +Vy = Ey
24

If one (@) converts the Laplacian to polar coordinates

(b) assumes that the potential energy is constant
(arbitrarily 0)

(c) holds r fixed (i.e. neglects derivatives with respect to r)

It can be shown that the Schrddinger Equation for a 2D Rigid
Rotor becomes:

ht 0
- 2 Wz =By
2urc do
2 2
or _h_@_z//zz Ew
21 0¢
where | = yrz is the moment of inertia
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3.4. The Solution of S.E Wavefumction and Energy

Assume
im o

y = Ae

dy _ (im)Ae™
do
2

dy

= (im)ZAeimq’
dgo2
d2
T

oy .
21 0p° /
0w 2IE
—=——y=-0onstant .y
0p° h?
) 21E
—mw=—h—2w
2 ~n 2
m2—2|—E or E:hm
h 2l

Note: So far, m can have any value;
l.e. there Is no energy quantization
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Application of the Boundary Conditions:
Quantization of Energy

Wavefuncion: v = Ae™

To be a physically realistic solution, one must have:

yip+21)=y (o)
Therefore: Ae™e?m - pgmr or  g¥" =]
cos(2zm)+isin(2zm)=1

Thisisvalid only for: m =0,+1+2,13,.

Therefore, only certain values for the energy are allowed;
l.e. the energy is quantized: h2m 2

21

E

m=0,1+1+2+3,..

Zero Point Energy E, =0

One encounters a ZPE only when the particle is bound (e.g. PIB,

HO, H-Atom), but not in freely moving systems (e.g. 2D and 3D

Rigid Rotor, free particle) Slide 17



Example

For the wavefunction of the rigid rotor:
W — Aelmgo

1- Find the normalization constant A

2. <>



3.5. Application of the 2D Rigid Rotor

Solving the 2D Rigid Rotor is not just a learning exercise. However,
the model has a real world application, it can be used to characterize the
rotation of molecules adsorbed on surfaces.

However,

Example

When an H, molecule is chemisorbed on a crystalline surface, its
rotation can be approximated as that of a 2D rigid rotor.

The H, bond length is 0.74 A Calculate the frequency (in cm®) of
the lowest energy rotational transition of chemisorbed H.,.
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htm? r=0.74 A =0.74x1010m

E = 9] m=0,+1+2,43,. 1 amu = 1.66x1027 kg
h =1.05x1034 Jes
h = 6.63x1034 Jes
c = 3.00x1019 cm/s
_ My (amu)’ gy L66XI0TTkG oo kg
m,+m, lamu+lamu amu

| =ur? = (8.30x10‘28kg)(0.74x10‘1°m)zz 4.55x10 kg -m?

m? wtm? 2 (105x10°% 3 -s)’ —F ™
AE = My _ATmg A7\ ) 1210
2121 21 2(455x10*°kg-m’) 1 m,=0
_AE 1.21x10°2 ] 0 g
V =—— =
hc (6.63x10°% J-5)(3.00x0%cm/s) 0"
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3.6. The 3D Quantum Mechanical Rigid Rotor
3D Schrodinger Equation for a particle (Sph. Pol. Coords.)

hZ
-EVZV/ tV(r.0,0)y =Ey v =y(r.0,0)
2 2
_ 12 0 (rzw)+ — 0 (sin(ﬁ)a—l//)+ ; _12 6"//2 +Vy =Ey
2m | reor or ) resin(@) 06 00 ) r°sin“(0) og

Modification: Two masses moving relative to their CM

2 2
I 12 g (rza"’/jJr 2 _1 0 (sin(é’)av/j+ > _12 8://2 +Vy =Ey
21| r°or or ) r°sin(@) 06 00 ) rsin“(0) og

| oo

__mm,
m, +m,
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The Schrodinger Equation in terms of the L2 operator

N

2
The L2 operatoris: L° = -4° _1 0 (sin(e) 0 j L 0
sin(6d) 00

T =
00 sin®(9) 0op°

2 2
ALt L) S, g,
24| r°or or ) r°sin(d) 06 00 ) r°sin“(0) op

|

2 32 2
I 128(r28—'//j+ h2 _1 a(sin(@)aw)+ ;L a"”z +Vy = Ey
21| r°or or 2ur-|sin(d) 06 00 ) sin“(0) dp

el 1o ,0w 1,
- r + —Lw +Vy =E = ur’
Zy[rz o o ] o] y+Vy =ty where |=ur

“ P

Radial KE Rotational PE
KE

Slide 22



The Quantum Mechanical Rigid Rotor

f 1
_n +— Ly + M =E
or 21 V/M '
0 —h° 1 0., .0v
_ = X sin(6 E
2 r Zyrzlsin(ﬁ)M( Uﬁ@j sin” }M '

The Rigid Rotor model is used to characterize the rotation of
diatomic molecules (and is easily extended to linear polyatomic molecules)

It is assumed that: (1) The distance between atoms (r) does not change.

(2) The potential energy is independent of angle
[i.e. V(0,0) = Const. = 0]

1 N
Therefore: ELZV/ = Ey

2 2
LI P (sin(é’)a—"”]Jr L 9V i_g,
21| sin(@) 00 00 ) sin“(0) dp
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Solution of the Rigid Rotor Schrodinger Equation

We will only outline the method of solution.

hzll 8(sirw(ﬁ)a"’/j+ ! 8Zl/j}Ew v =y (0,0)

21 sin(9) 06 30 ) sin’(9) 0¢°

This equation can be separated into two equations, one
containing only 6 and the second containing only ¢.

Assume: ¥ (f,0)=0(d)e 0 (p)
l Algebra + Separation of Variables

21 © 00
_hziazd)_
21 ® 0¢°

hel . 0 [ . 00 . -
[———sm(&)—{sm(@)%j—Esm (9)}_C

and
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el o[ . 00 .
— — =sin(8) —| sin(d) — |- Esin?(8) |=C
[ 21 © ()aeﬂ ()aej ()}
10
21 ® 0¢°

and

Solution of the ® equation is rather simple.

However, solution of the ® equation most definitely is NOT.

Therefore, we will just present the results for the quantum numbers,
energies and wavefunctions that result when the two equations
are solved and boundary conditions are applied.
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The Rigid Rotor Quantum Numbers and Energies

The Quantum Numbers: (=01 2,3, ..
m=0,11,t2,. !

Note that because this is a two dimensional problem, there
are two quantum numbers.

2

The Energy: Eg:Z_I((ml) g, =20+1

Note that the energy is a function of £ only. However, there are
2 ¢ + 1 values of m for each value of £ . Therefore, the degeneracy
of the energy levelis2¢ + 1

2

Remember that for a classical Rigid Rotor: E = o

Comparing the expressions, one finds for the
angular momentum, that: | = //(/+1) -7
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An Alternate Notation

When using the Rigid Rotor molecule to describe the rotational
spectra of linear molecules, it is common to denote the two
guantum numbers as J and M, rather than £ and m.

With this notation, one has:

The Quantum Numbers: J =0,1,2,3,..

M=0,t1,z2,.. 1]

2

The Energy: EJ:Z_IJ(J +1)  g,=2J]+1
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The Wavefunctions

When both the ® and @ differential equations have been solved,
the resulting wavefunctions are of the form:

v (0,0)=0(0)00(p)=N, e"P"(9)

The Pﬂ|m| (9) are known as the associated Legendre polynomials.

The first few of these functions are given by:
1
P’ =1 PY = =(3cos?(9) -1
0 2 21( ( ) )
P’ = cos(d) P! = Esin(e)cos(e)

P =sin(f) P, =sin"(6)

We will defer any visualization of these wavefunctions until
we get to The Hydrogen Atom
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Spherical Harmonics
The product functions of 6 and ¢ are called “Spherical Harmonics”,
Ylm(e’ (I)) im |m|
Vo (0,0)=0(0)eD(p) =N, e™"P7(6)

They are the angular solutions to the Schrédinger Equation for any

spherically symmetric potential; i.e. one in which V(r) is independent
of the angles 6 and ¢.

Some examples are:
Y, (0,0)=N,"P'(0)=N,e"sin(@)  Y,(0,0)=N,e"P(8)=N,e"sin’(0)
Y, (0,0)= N e"P"(8) =N, cos(f) Y, (0,0)=N,e"P(8) = N,e”sin(0)cos(q)
V(B,0)= N e "P(@) = N, e sin(@)  Yy(0,0) = Nye®™ P (0) = N,y (3c0s'(0)-1]
Y, (0,0)=N, e "P}(0)=N, e"sin(d)cos()
Y, ,(0,0)=N, e""P/() =N, e sin’(0)
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Example One of the Spherical Harmonics is: Y (6,¢) = Ne™sin(f)

Show that this function is an eigenfunction of the Rigid Rotor
Hamiltonian and determine the eigenvalue (i.e. the energy).

2 2
HY = 20y =gy or -] 2 a(sin(@)an+ LSS Y-V
21 21 | sin(8) 06 06 ) sin“(0) dp

% = Ne™ cos(6)

—(sin(e)Z—;j = a%( Ne ™" sin(9) cos(0) )= Ne™™ [— sin(9) + 0032(9)}

= Ne™ [1—23in2(6’)}

1 9 (sin(@) an: Ne™ 5 Nesin(o)
sin(@) 00 06 ) sin(6)
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1 1 0% 1 0 oY) Ne™ .
= EY 9 [ _ CoNe-
ZILm(H j+sin2(9) ang] sin(0) 5«9(Sln(0)8¢9j_sin(0) 2Ne"sin(6)

Y (8,0)=Ne"sin(f)
Y
5_ INe™ sin(0) | 1 Y _Ne"

2 . ' sin?(0) 6p®  sin(d
a—YZ:—Ne"‘”sin(Q) 9) o9 )

0p

2 2
Hy =22 a(gmmaY)+_§ il
21| sin(8) 06 00 ) sin“(0) dop

h’ P o iy p
:_ZI{'( —2Ne " sin(6) %

2 2

fi ip 7
- +52[Ne ¢’sm(¢9)]:+_.zy

21
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Note: Comparingto: E, = Hg((url)

we see that: [ -]

Slide 32



3.7 Angular Momentum and the Rigid Rotor

The Spherical Harmonics, Y, (0, ¢), are eigenfunctions of the
angular momentum operators:

2
R 8[sin(9)ﬂj+ S
sin(@) 06 06 ) sin“(0) do
[ -1C
| O

The eigenvalues are given by the equations:
LY, (8,9) = (L4 1)8%,,(8,9)
LY, (6,0)=mhY, (6,0)

N N
Note: I/E is straightforward to show that L? and L, commute;
N\
l.e. [L%L,]=0.
Because of this, it is possible to find simultaneous

eigenfunctions of the two operators which are, as shown above,
the Spherical Harmonics.
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As discussed earlier, the restrictions on the quantum numbers
are given by:
[=0,1,23,..

m=01+1+2,. 1/

Therefore, both the magnitude, |L|, and the z-component, L,, of the
angular momentum are quantized to the values:

L= i+t £=0,1,2,3,..
Lo=mh m=0z2122,.. 1!

If a magnetic field is applied, its direction
L, IL| defines the z-axis.

If there is no magnetic field, the z-direction
IS arbitrary.
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One of the Spherical Harmonicsis: Y (f,¢)= Ne ™ sin(d)

Show that this function is an eigenfunction of L? and L, and determine
the eigenvalues.

2
L% = —h? _1 a(sin(ﬁ)ﬁjJr ;[ 82 [:Zi
sin(9) 90 00 ) sin“(0) dg 0

We've actually done basically the first part a short while ago.

Remember: L n”
+ HY =—LY =EY =2—Y
A 21

Therefore: Y = 25 = [(/ +1)i"Y [=1

g hOY R
LY _T%:T(_I)Ne sin(@) = -fY =mhY

m=-1
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Just keep in mind: The Hydrogen Atom

Schrodinger Equation
3D Schrodinger Equation in Spherical Polar Coordinates

2 2
I 12 ‘ (rzawj+ : _1 ‘ (sin(@)a—wj+ : _12 85”2 +Vy =Ey
2m| reor or ) resin(@) 06 06 ) r°sin“(0) oe

The Hydrogen atom is an example of a “centrosymmetric” system,
which is one in which the potential energy is a function of only r, V/(r).

In this case, the Schrddinger equation can be rearranged to:
2 2 2
_h_izﬂ(rza—‘/’)w(r)w SN I (sin(e)a"’)+ _1_0v_g,
2m r° or or 2m| resin(d) 00 00 ) r-sin“(9) dop
Radial Part Angular Part

Note that the Angular part of the Hydrogen atom Schrddinger equation
IS the same as Rigid Rotor equation, for which the radial part vanishes.

Therefore, the angular parts of the Hydrogen atom wavefunctions are
the same as those of the Rigid Rotor
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3.8 Application of Angular momentum

Rotational Spectroscopy of Linear Molecules
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Rotational Spectroscopy of Linear Molecules

Energy Levels

~

2 4 208 g,=9
EJ:z—IJ(J+1)gJ:2J+1 '
h2
Equivalent Form: E. = J(J +1
) ©8x? 0+ 3 128 gy=7
E, =hc hz J(J+1)
A 2 6B  g,=5
E, = heBI(J +1) )
Rotational i A ! B 6,73
Constant (cm?): B = 0 0 gp=1

87°lc

Note: You must use c in cm/s, even when

using MKS units.
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Diatomic versus Linear Polyatomic Molecules

h
87°lc
In general, for linear molecules, the moment of inertia is given by:

B =

N is the number of atoms
m, is the mass of the atom i
r; is the distance of atom i from the Center of Mass.

If N=2 (diatomic molecule) the moment of inertia reduces to:

| = ur’

m, m . . . )
—_—12 where risthe interatomic distance

m, +m,
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Selection Rules
Absorption (Microwave) Spectroscopy

For a rotating molecule to absorb light, it must have a permanent
dipole moment, which changes direction with respect to the electric
vector of the light as the molecule rotates.

AJ==1 (AJ = +1 for absorption)

e.g. HCI, OH (radical) and O=C=S will absorb microwave radiation.
O=C=0 and H-C=C-H will not absorb microwave radiation.

Rotational Raman Spectroscopy

For a rotating molecule to have a Rotation Raman spectrum, the
polarizability with respect to the electric field direction must change
as the molecule rotates. All linear molecules have
Rotational Raman spectra.

AJ =12

AJ = +2: Excitation (Stokes line)
AJ = -2: Deexcitation (Anti-Stokes line) Slide 40



Intensity of Rotational Transitions

The intensity of a transition in the absorption (microwave) or

Rotational Raman spectrum is proportional to the number of molecules
in the initial state (J”); i.e. Int. oc N

Boltzmann Distribution: N,. oc g,.e

~heBJ"(J"+1)

N, oc(21"+)e &
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Rotational Spectra
Absorption (Microwave) Spectra
J'>J
AE=E,-E,
AE = heBJ (I '+1)-heBJ "(J"+1)
J = U7+
AE = heB (3 "+ 1)(J "+ 2) - heBI "(J "+1)
AE =heB(20"+2) 1"=0,1,2,3,..

F=m 2 B(23"2) 1"=0,1,2,3,..
C

94=9
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Rotational Raman Spectra 4 208 g,=9

J' 5 J
AE=E,-E, )
) ) 3 128 Qs=7
AE =heBJ'(3'+1)-heBI"(J"+1)
S 2 — 6B g,=5
AE = heB (3" 2)( "+ 3)- heBJ "(J "+ 1)
) 1 2B g,=3
AE =heB(4)"+6) J"=0,1,2,3,.. o 0 g-l
V:£:§(4J"+6) 1"=0,1,2,3,...
he
I |
0 6B 10B 14B
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The HCI bond length is 0.127 nm.

Calculate the spacing between lines in the rotational microwave
h = 6.63x1034 Jes

absorption spectrum of H-3°Cl, in cm-,
c = 3.00x108 m/s

m,m., (lamu)(35amu)

= — ~0.972amu c = 3.00x10° cm/s
m,+mg lamu+35amu N, = 6.02x1022 mol?
1.66x10°%" k ) k =1.38x10%3 J/K
p=0972amu- J —1,61x10% kg 1 amu = 1.66x10-27 kg

lamu

= 0% (1613107 kg )(0.127x10° m = 2.60x0 kg -’

h 6.63x107* J -s

B = 2\~ 2
8r°lc  8(3.14)"(2.60x10* kg -m*)(3.00x10" cm /5

=10.78¢m *~10.8¢m™!

As discussed above, microwave absorption lines occur at 2§, 4§, 6§,
Therefore, the spacing is 2B

Spacing=2B =2x10.8=21.6¢cm""
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3—>4

: : . [
Calculate the ratio of intensities (at 25°C): T N
1—2 4 ZOB g4:9

h =6.63x103% Jes
c = 3.00x101% cm/s

k=1.38x10% J/K 3 12B  g5=7
B =10.8 cm-
: 2 6B g,=5
.., Nj_ gse_ESIKT _ 7e RN _ Ze-lohcé/kT ‘ )

TN ge B/ ga2heBKT 37, 1 28 g,=3
|1—>2 Nl gle 0 O gozl
| [

324 _ o082 gy
I1—>2 3
10hcB  10(6.63x107°* J -5)(3.00x10" cm /s )(10.8cm™
neB _ = 0.52
kT (1.38x107 J [K)(298K))

Note: This is equivalent to asking for the ratio of intensites of

fourth line to the second line in the rotational microwave spectrum.
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The first 3 Stokes lines in the rotational Raman h = 6.63x1034 Jes
spectrum of 1>CQ, are found at 2.34 cm™, c = 3.00x101° cm/s
3.90 cm?! and 5.46 cm1. k =1.38x102 J/K

Calculate the C=0 bond length in CO,, in nm. 1 amu = 1.66x10%" kg

~ ~

234cmt=6B-0=6B — B =0.39¢cm"

4 ~— 20B  g,=9
3.90¢m=12B-2B =108 — B =0.39cm"
3 — 12B 05=7
5.46cm " =20B-6B=14B — B =0.39¢cm"
2 — 6B  ¢,=5
- h h
B: 5 > I: S 1 Zg 91:3
8r°lc 87r°Bc¢C 5 5 0o=1

6.63x10°* kg -m° /s
8(3.14)"(0.39¢m™)(3.00%10" cm /5

I = = 7.18x10 kg -m?
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The first 3 Stokes lines in the rotational Raman h = 6.63x1034 Jes
spectrum of 1>CQ, are found at 2.34 cm™, c = 3.00x101° cm/s
3.90 cm?! and 5.46 cm1. k =1.38x102 J/K

Calculate the C=0 bond length in CO,, in nm. 1 amu = 1.66x10%" kg
| =7.18x10 kg -m*

_ 2 2 2 2 _ 2
I—Zmiri:morcoerC(O) FM = 2M 1, O C O
|

_ ] m, =16amu-1.66x10*" kg / amu

2
Mo = 2.66x107% kg

rCO

=1.16x10 ™ m=10.116nm =1.16 Angstroms

rC 0

~[7.18x10™ kg -m?
2.2.66x10 % kg
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Calculate the initial state (i.e. J”) corresponding to the most
intense line in the rotational Raman spectrum of 12C1°0, at 25°C.

Hint: Rather than calculating the intensity of individual h = 6.63x10-34 Jes
transitions, assume that the intensity is a continuous ¢ = 3.00x10'° cm/s

function of J” and use basic calculus. k = 1.38x10-23 J/K
B =0.39 cm!
3"(3"+1)heB o .
sy Ny (20 "+ 1)e T o (23 "+1)e'“(J ) g = rLC_TB

N, Is at a maximum for dN,./dJ"=0.

oo

0= (2] "+1)(ea(J"2+J"))(—a)(2J "+1)+(e“(“2”")).2
0 - (e‘“(“‘"z”"))[—a (207+1)" +2]
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~ h = 6.63x1034 Jes

0= (e‘“(“z”")j[—a (23"+1) + 2} o-1B ¢ = 3.00x10%0 cm/s
kT k = 1.38x1023 J/K
B=0.39cm?!
Therefore: [—a (2J e l)2 —- 2} =0 — 2)J"+1= F
(04
2(1.38x107° 3 / K )(298K )
2] "+1= = 1060 = 32.6
" \/(6.63x1034J -5)(3.00x10"° cm /5 )(0.39¢m ™)

J"=32§_1:158z16
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Consider the linear molecule, H-C=C-ClI.

There are two major isotopes of chlorine, 3°Cl (~75%) and
37Cl (~25%). Therefore, one will observe two series of lines
In the rotational spectrum, resulting from transitions of
H-C=C-3>Cl| and H-C=C-3"Cl.

Can the structure of H-C=C-ClI be determined from these two series?

No. There are 3 bond distances to be determined,
but only 2 moments of inertia.

What additional information could be used to determine all three
bond distances?

The spectrum of D-C=C3>Cl| and D-C=C3’Cl
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3.9 The ladder operators

In general, assume L,, L, and L, are operators with communications
Relations:

00, =int, [€6, ]=-int, [0,6 =i, [0,.L,]=-in,

N N

L0 |=inL, |GG, [=-inL,

COECEEEEE
=L+ +L1

Then we can introduce a new operators

L. =L, +ily Raising Operator
L =L, —ily Lowering Operator



Properties of Ladder operators

1) L,L=L%-L% +7L, 2) LL=0L2-1%2-nL,
3) [L,L]=-nL,
if L2Y (0,¢) =cY (0, ¢) and L)Y (8,¢)=bY(6,0)

then

D) LMY (0.¢)=(+r)LY(0,9)

Operating on the eigenfunction Y with raising operator
L, convert Y into another eigenfunction of Lz with Eigen
value 7 higher than the eigen value of Y




Properties of Ladder operators

2) LL’Y(0,¢) = (b+2n)L2Y (6, 9)
L, LY (0,¢) = (b +kn)LEY (0, 4)
3) LLY(,¢)=(-nLY(, ¢
L, LYY (0,¢) = (b—kR)LZY (0, §)
L LY (0,¢) = (b £ kn)L2Y (0, 4)
LZLSY (0, 4) =CLLY (6, 4)
4) LY (0,0) =01, Y1k (6, 9)

L.Y . (6,0)=zero
LY . (6,0)=zero

By using the Raising and
Lower operators on the on
the eigenfunction with eigen
value b, we generate a
ladder of eigen values, step to
difference =h

remmber L°Y (8,¢) = (j(j+1)%%Y (6,9)

L,Y (0,¢) =maY (0,9)




Important Notes

(A} B}

LY (0.¢) = (i(i +D)n°Y (6, 4) LY (0,¢) = (11 +D)17Y (0, ¢)
j=0,£,1,§,2,§,3,z,4,.... 1=0,1,2,3,4,....

2 2 2 2
m=-J,..0,..+ ] m =-lI,...0,..+1

LY (6,¢) =m;nY (6,9) LY (6,9) = m7iY (6,9)

Comparison of A with B show that in addition to the
Integrated values of Angular momentum quantum
mechanics (I1=0,1,2,3,...) we have a possibility for half
Integrated values (j=0,1/2,1,3/2, 2,...) mean we have
another kind of Angular momentum ,beside the orbital
Angular momentum, I) can have half integral as well as
Integral called Spin Angular momentum




Properties of Ladder operators

Find the following:

1) L.L 2) L.L 3) [L.L] 4) L, L]
5)Later find



Spin angular momentum (SPIN)

An electron spin s = 1/2 Is an Intrinsic
property of electrons. Electrons have
Intrinsic angular momentum characterized

by guantum number 1/2.

Experimental evidence like the hydrogen fine structure
and the Stern-Gerlach experiment suggest that an
electron has an intrinsic angular momentum,
iIndependent of its orbital angular momentum. These
experiments suggest just two possible states for this
angular momentum, and following the pattern of
guantized angular momentum, this requires an angular

momentum quantum number of 1/2



The guantum numbers associated with electron spin follow the

characteristic pattern:

S=ys(s+Dh, s= % and mszi%

Example: An electron spin s = 1/2 is an intrinsic
property of electrons. Electrons have intrinsic
angular momentum characterized by quantum
number 1/2. In the pattern of other quantized

angular momenta, this gives total angular

_ T ]
momentum S = /s(s + 1aifs=1/2s0 S = . h

the resulting fine structure which is observed
corresponds to two possibilities for the
z-component of the angular momentum.

S —+1h
Z7 =2

Spin ""'up" and
""down"" allows two
electrons for each
set of spatial
guantum numbers:

n. |, mi



Spin-Orbit Interaction

The energy levels of atomic
electrons are affected by the
interaction  between  the
electron  spin  magnetic
moment and the orbital
angular momentum of the
electron. It can be visualized
as a magnetic field caused by
the electron's orbital motion
interacting with the spin
magnetic  moment.  This
effective magnetic field can
be expressed in terms of the
electron  orbital angular

momentum.

The interaction energy
Is of the form

E=u-B

like a magnet in an
applied magnetic field.
B

u=IA

—
f(r) S-L
A N
Spin Orbital
angular angular
momentum momentum
E=u-B
— u'
™N
From From
electron orbital
spin motion

The interaction energy is that of a magnetic dipole in a magnetic field and takes
the form. When atomic spectral lines are split by the application of an external
magnetic field, it is called the Zeeman effect. The spin-orbit interaction is also a
magnetic interaction, but with the magnetic field generated by the orbital motion
of an electron within the atom itself. It has been described as an "internal

Zeeman effect



http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/zeeman.html#c4

