Lecture 4

Angular Momentum and Rigid-Rotor Models and

Outline

1. Review of basics tool (Vectors and Commutation)
2. Basic Definition

3-Quantum Mechanics treatment of Angular Momentum
3.1.Operator Commutation and Simultaneous Eigenfunctions
3.2 Spherical Polar Coordinates for Angular Momentum
3.3 Model system. The 2D Quantum Mechanical Rigid Rotor
3.4. The Solution of S.E Wavefumction and Energy
3.5. Application of the 2D Rigid Rotor
3.6. The 3D Quantum Mechanical Rigid Rotor
3.7 Angular Momentum and the Rigid Rotor
3.8 Application of Angular momentum
3.9 The ladder operators
3.10 Spin angular Momentum

I- review of basic tools: Commutation

$[A, B]=A B-B A$
$[\mathrm{A}, \mathrm{B}]=-[\mathrm{B}, \mathrm{A}]$
$[k A, B]=[A, k B]=k[A, B]$
$[\mathrm{A}, \mathrm{B}+\mathrm{C}]=[\mathrm{A}, \mathrm{B}]+[\mathrm{A}, \mathrm{C}]$
$[\mathrm{A}+\mathrm{B}, \mathrm{C}]=[\mathrm{A}, \mathrm{C}]+[\mathrm{B}, \mathrm{C}]$
$[\mathrm{A}, \mathrm{BC}]=[\mathrm{A}, \mathrm{B}] \mathrm{C}+\mathrm{B}[\mathrm{A}, \mathrm{C}]$
[AB,C]=[A,C]B+A[B,C]

II- Basic definition

Angular Momentum (L)

$$
L=\vec{r} x \vec{p}
$$

Magnitude: $\quad L=r p \sin (\theta)$
Circular Motion: $\quad L=r p \sin \left(90^{\circ}\right)=r p$

$$
\text { or: } \begin{aligned}
L & =r p=r m v=\left(m r^{2}\right)\left(\frac{v}{r}\right)=\left(m r^{2}\right) \omega \\
L & =I \omega \quad \text { where } \quad I=m r^{2} \quad \omega
\end{aligned} \quad=\frac{v}{r} .
$$

Moment Angular
of Inertia Frequency

Energy

$$
E=\frac{p^{2}}{2 m}=\frac{m v^{2}}{2}=\frac{m(r \omega)^{2}}{2}=\frac{m r^{2} \omega^{2}}{2}=\frac{I \omega^{2}}{2} \text { or: } E=\frac{(I \omega)^{2}}{2 I}=\frac{L^{2}}{2 I}
$$

Modification: Rotation of two masses about Center of Mass

$$
I=m r^{2}
$$

$$
I=\mu r^{2}
$$

where $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$

Comparison of Equations for Linear and Circular Motion

Linear Motion Circular Motion

Mass

Velocity
V

$$
\mathrm{p}=\mathrm{mv}
$$

Energy $\quad E=\frac{p^{2}}{2 m}$
or $\quad E=\frac{m v^{2}}{2}$
m

Momentum
$I=m r^{2}$
$\omega=\frac{v}{r} \quad$ Angular velocity
$E=\frac{I \omega^{2}}{2} \quad$ Energy
$E=\frac{L^{2}}{2 I} \quad$ Energy

3-Quantum Mechanics treatment of Angular Momentum

$$
\begin{array}{cc}
\vec{r}=x \vec{i}+y \vec{j}+z \vec{k} & \vec{p}=p_{x} \vec{i}+p_{y} \vec{j}+p_{z} \vec{k} \\
\vec{L}=\vec{r} x \vec{p}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right| \begin{array}{l}
\vec{L}=\left(y p_{z}-z p_{y}\right) \vec{i}+\left(z p_{x}-x p_{z}\right) \vec{j}+\left(x p_{y}-y p_{x}\right) \vec{k} \\
L_{y}=z p_{z} \\
L_{x}=y p_{z}-z p_{y} \quad L_{z}=x p_{y}-y p_{x}
\end{array} \\
\hat{p}_{x}=\frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x} & \hat{L}_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
\hat{p}_{y}=\frac{\hbar}{i} \frac{\partial}{\partial y}=-i \hbar \frac{\partial}{\partial y} & \hat{L}_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \\
\hat{p}_{z}=\frac{\hbar}{i} \frac{\partial}{\partial z}=-i \hbar \frac{\partial}{\partial z} & L^{2}=\hat{L}_{x} \bullet \hat{L}_{x}+\hat{L}_{y} \bullet \hat{L}_{y}+\hat{L}_{z} \bullet \hat{L}_{z}
\end{array}
$$

3.10perator Commutation and Simultaneous Eigenfunctions

It can be shown that:

$$
\begin{aligned}
& {\left[\hat{L}_{x}, \hat{L}_{y}\right] \neq 0 \quad\left[\hat{L}_{y}, \hat{L}_{z}\right] \neq 0 \quad\left[\hat{L}_{x}, \hat{L}_{z}\right] \neq 0 \quad \text { Do not commute }} \\
& {\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar L_{z}\left[\hat{L}_{y}, \hat{L}_{x}\right]=-i \hbar L_{z}\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar L_{x}\left[\hat{L}_{z}, \hat{L}_{y}\right]=-i \hbar L_{x}} \\
& {\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar L_{y}\left[\hat{L}_{x}, \hat{L}_{z}\right]=-i \hbar L_{y}}
\end{aligned}
$$

Because the operators for the individual components do not commute, one cannot determine two separate components simultaneously. i.e. they cannot have simultaneous eigenfunctions.

$$
\left[\hat{L}_{x}, L^{2}\right]=\left[\hat{L}_{y}, L^{2}\right]=\left[\hat{L}_{z}, L^{2}\right]=0
$$

Do commute
Because these operators commute, one can determine L_{z} and L^{2} simultaneously; i.e. they can have simultaneous eigenfunctions.

3.2 Spherical Polar Coordinates for Angular momentum

In Cartesian Coordinates, the 3D Schrödinger Equation is:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial z^{2}}+V(x, y, z) \psi=E \psi \quad \psi=\psi(x, y, z) \\
\mathbf{T}(\mathbf{x}) \quad \begin{array}{c}
\mathbf{y})
\end{array} \quad \mathbf{T}(\mathbf{z}) \quad \mathbf{V}(\mathbf{x}, \mathbf{y}, \mathbf{z})
\end{gathered}
$$

The Laplacian in Cartesian Coordinates is: $\quad \nabla^{2} \equiv \frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}+\frac{\partial}{\partial z^{2}}$
Therefore: $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(x, y, z)=E \psi$
The "Rigid Rotor" and the Hydrogen Atom can be solved exactly in Spherical Polar Coordinates.

3.2 Spherical Polar Coordinates for Angular Momentum

To specify a point in space requires three coordinates. In the spherical polar coordinate system, they are:
$r \quad 0 \leq r<\infty \quad$ Distance of point from origin (OP)
$\theta \quad 0 \leq \theta<\pi \quad$ Angle of vector (OP) from z-axis
$\phi \quad 0 \leq \phi<2 \pi \quad$ Angle of x - y projection (OQ) from x-axis

Relation of Cartesian to Spherical Polar Coordinates

$\cos (\theta)=\frac{z}{r}$

y-axis
$O Q=r \sin \theta$ so $x=r \sin \theta \cos \phi, y \neq r \sin \theta \sin \phi$ and $z=r \cos \theta$

$$
\mathrm{OQ}=r \sin (\theta)
$$

$$
\cos (\varphi)=\frac{x}{O Q}
$$

$$
\begin{gathered}
\sin (\varphi)=\frac{y}{O Q} \\
y=0 Q \sin (\varphi)
\end{gathered}
$$

$y=r \sin (\theta) \sin (\varphi)$

The Laplacian in Spherical Polar Coordinates

Cartesian Coordinates: $\quad \nabla^{2} \equiv \frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}+\frac{\partial}{\partial z^{2}}$
the Laplacian in spherical polar coordinates is given by:

$$
\nabla^{2} \equiv \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

$$
d V=d x d y d z
$$

$$
d V=d r \bullet r d \theta \cdot 0 Q d \varphi
$$

$$
d V=d r \bullet r d \theta \cdot r \sin (\theta) d \varphi
$$

$$
d V=r^{2} \sin (\theta) d r d \theta d \varphi
$$

Angular Momentum Operators in Spherical Polar Coordinates

$$
\left.\begin{array}{ll}
\hat{L}_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) & L^{2}=\hat{L}_{x} \bullet \hat{L}_{x}+\hat{L}_{y} \cdot \hat{L}_{y}+\hat{L}_{z} \bullet \hat{L}_{z} \\
\begin{array}{l}
\text { It may be } \\
\text { shown that }
\end{array} & \begin{array}{l}
\text { It may be } \\
\text { shown that }
\end{array} \\
\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi}=\frac{\hbar}{i} \frac{\partial}{\partial \phi} & L^{2}=-\hbar^{2}\left\{\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\right\}
\end{array}\right\} \begin{aligned}
& L^{2}=-\hbar^{2}\left\{\frac{\partial^{2}}{\partial \theta^{2}}+\cot (\theta) \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}\right\}
\end{aligned}
$$

3.3 Model system. The 2D Quantum Mechanical Rigid Rotor

Assume that two masses are attached by a rigid rod (i.e. ignore vibrations) at a fixed distance, r,and are free to rotate about the Center of Mass in their x-y plane.

The angle ϕ represents the angle of rotation relative to the x-axis.
The 2D Schrödinger equation for the relative motion of two masses is:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi+V \psi=E \psi \\
\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \quad \begin{array}{l}
\text { Two Dimensional Laplacian } \\
\text { in Cartesian Coordinates }
\end{array} \\
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

$$
-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi+V \psi=E \psi
$$

If one (a) converts the Laplacian to polar coordinates
(b) assumes that the potential energy is constant (arbitrarily 0)
(c) holds r fixed (i.e. neglects derivatives with respect to r)

It can be shown that the Schrödinger Equation for a 2D Rigid Rotor becomes:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu r^{2}} \frac{\partial^{2} \psi}{\partial \varphi^{2}}=E \psi \\
& \text { or } \quad-\frac{\hbar^{2}}{2 I} \frac{\partial^{2} \psi}{\partial \varphi^{2}}=E \psi
\end{aligned}
$$

where $\quad I=\mu r^{2}$ is the moment of inertia

3.4. The Solution of S.E Wavefumction and Energy

$$
-\frac{\hbar^{2}}{2 I} \frac{\partial^{2} \psi}{\partial \varphi^{2}}=E \psi
$$

Assume
$\psi=A e^{i m \varphi}$
$\frac{d \psi}{d \varphi}=(i m) A e^{i m \varphi}$
$\frac{d^{2} \psi}{d \varphi^{2}}=(i m)^{2} A e^{i m \varphi}$

$\frac{d^{2} \psi}{d \varphi^{2}}=-m^{2} \psi$$\quad$| $\frac{\partial^{2} \psi}{\partial \varphi^{2}}=-\frac{2 I E}{\hbar^{2}} \psi=-\operatorname{Constant} \cdot \psi$ |
| :---: |
| $-m^{2} \psi=-\frac{2 I E}{\hbar^{2}} \psi$ |
| $m^{2}=\frac{2 I E}{\hbar^{2}}$ or $E=\frac{\hbar^{2} m^{2}}{2 l}$ |

Note: So far, m can have any value;
i.e. there is no energy quantization

Application of the Boundary Conditions:
 Quantization of Energy

Wavefuncion:

$$
\psi=A e^{i m \varphi}
$$

To be a physically realistic solution, one must have:

$$
\psi(\varphi+2 \pi)=\psi(\varphi)
$$

Therefore: $A e^{i m p} e^{2 \pi m i}=A e^{i m \varphi}$ or $e^{2 \pi m i}=1$

$$
\cos (2 \pi m)+i \sin (2 \pi m)=1
$$

This is valid only for: $m=0, \pm 1, \pm 2, \pm 3, \ldots$
Therefore, only certain values for the energy are allowed;
i.e. the energy is quantized:

$$
E=\frac{\hbar^{2} m^{2}}{2 l} \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

Zero Point Energy $\quad E_{0}=0$

One encounters a ZPE only when the particle is bound (e.g. PIB, HO, H-Atom), but not in freely moving systems (e.g. 2D and 3D Rigid Rotor, free particle)

Example

For the wavefunction of the rigid rotor:
$\psi=A e^{i m \varphi}$
1- Find the normalization constant A
2. $\langle\phi>$

3.5. Application of the 2D Rigid Rotor

Solving the 2D Rigid Rotor is not just a learning exercise. However, the model has a real world application, it can be used to characterize the rotation of molecules adsorbed on surfaces.
However,

Example

When an H_{2} molecule is chemisorbed on a crystalline surface, its rotation can be approximated as that of a 2 D rigid rotor.
The H_{2} bond length is $0.74 \AA$ Calculate the frequency (in cm^{-1}) of
the lowest energy rotational transition of chemisorbed H_{2}.

$$
E=\frac{\hbar^{2} m^{2}}{2 l} \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

$$
\begin{aligned}
& \mathrm{r}=0.74 \AA=0.74 \times 10^{-10} \mathrm{~m} \\
& 1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg} \\
& \hbar=1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \mathrm{c}=3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \mu=\frac{m_{H}^{2}}{m_{H}+m_{H}}=\frac{(1 \mathrm{amu})^{2}}{1 a m u+1 a m u}=0.50 \mathrm{amu} \cdot \frac{1.66 \times 10^{-27} \mathrm{~kg}}{a \mathrm{mu}}=8.30 \times 10^{-28} \mathrm{~kg} \\
& I=\mu r^{2}=\left(8.30 \times 10^{-28} \mathrm{~kg}\right)\left(0.74 \times 10^{-10} \mathrm{~m}\right)^{2}=4.55 \times 10^{-48} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \Delta E=\frac{\hbar^{2} m_{2}^{2}}{2 I}-\frac{\hbar^{2} m_{1}^{2}}{2 I}=\frac{\hbar^{2}}{2 I}=\frac{\left(1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)^{2}}{2\left(4.55 \times 10^{-48} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)}=1.21 \times 10^{-21} \mathrm{~J} \quad \square \mathrm{~m}_{2}=1 \\
& \bar{v}=\frac{\Delta E}{h c}=\frac{1.21 \times 10^{-21} \mathrm{~J}}{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)}=0
\end{aligned}
$$

3.6. The 3D Quantum Mechanical Rigid Rotor

3D Schrödinger Equation for a particle (Sph. Pol. Coords.)

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(r, \theta, \varphi) \psi=E \psi \quad \psi=\psi(r, \theta, \varphi) \\
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]+V \psi=E \psi
\end{gathered}
$$

Modification: Two masses moving relative to their CM

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]+V \psi=E \psi \\
& \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

The Schrödinger Equation in terms of the $\hat{\mathrm{L}}^{2}$ operator

The $\hat{\mathrm{L}}^{2}$ operator is: $\quad L^{2}=-\hbar^{2}\left\{\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}}\right\}$
$-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]+V \psi=E \psi$
$-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)\right]+\frac{-\hbar^{2}}{2 \mu r^{2}}\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]+V \psi=E \psi$
$-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)\right]+\frac{1}{2 I} L^{2} \psi+V \psi=E \psi \quad$ where $\quad I=\mu r^{2}$

Radial KE Rotational PE

The Quantum Mechanical Rigid Rotor

$-\frac{\hbar}{2 \mu}-\frac{\partial}{\partial r}\left(\frac{\partial \psi}{\partial r}\right]+\frac{-\hbar^{2}}{2 \mu r^{2}}\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]+\nsim=E \psi$
The Rigid Rotor model is used to characterize the rotation of diatomic molecules (and is easily extended to linear polyatomic molecules)

It is assumed that: (1) The distance between atoms (r) does not change.
(2) The potential energy is independent of angle [i.e. $\mathrm{V}(\theta, \phi)=$ Const. $=0$]
Therefore: $\frac{1}{2 I} \hat{L^{2}} \psi=E \psi$

$$
-\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]=E \psi
$$

Solution of the Rigid Rotor Schrödinger Equation

We will only outline the method of solution.

$$
-\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]=E \psi \quad \psi=\psi(\theta, \varphi)
$$

This equation can be separated into two equations, one containing only θ and the second containing only ϕ.

$$
\begin{gathered}
\text { Assume: } \Psi(\theta, \varphi)=\theta(\theta) \bullet \Phi(\varphi) \\
\downarrow \text { Algebra + Separation of Variables } \\
{\left[-\frac{\hbar^{2}}{2 I} \frac{1}{\Theta} \sin (\theta) \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \Theta}{\partial \theta}\right)-E \sin ^{2}(\theta)\right]=C} \\
\text { and }-\frac{\hbar^{2}}{2 I} \frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}=-C
\end{gathered}
$$

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 I} \frac{1}{\Theta} \sin (\theta) \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \Theta}{\partial \theta}\right)-E \sin ^{2}(\theta)\right]=C} \\
& \text { and } \quad-\frac{\hbar^{2}}{2 I} \frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}=-C
\end{aligned}
$$

Solution of the Φ equation is rather simple.
However, solution of the Θ equation most definitely is NOT.

Therefore, we will just present the results for the quantum numbers, energies and wavefunctions that result when the two equations are solved and boundary conditions are applied.

The Rigid Rotor Quantum Numbers and Energies

The Quantum Numbers: $\quad \ell=0,1,2,3, \ldots$

$$
m=0, \pm 1, \pm 2, \ldots, \pm l
$$

Note that because this is a two dimensional problem, there are two quantum numbers.

The Energy: $\quad E_{\ell}=\frac{\hbar^{2}}{2 I} \ell(\ell+1) \quad g_{\ell}=2 \ell+1$
Note that the energy is a function of ℓ only. However, there are $2 \ell+1$ values of m for each value of ℓ. Therefore, the degeneracy of the energy level is $2 \ell+1$

Remember that for a classical Rigid Rotor: $E=\frac{L^{2}}{2 I}$
Comparing the expressions, one finds for the angular momentum, that: $L=\sqrt{\ell(\ell+1)} \cdot \hbar$

An Alternate Notation

When using the Rigid Rotor molecule to describe the rotational spectra of linear molecules, it is common to denote the two quantum numbers as J and M , rather than ℓ and m .
With this notation, one has:

The Quantum Numbers: $J=0,1,2,3, \ldots$

$$
M=0, \pm 1, \pm 2, \ldots, \pm J
$$

The Energy: $\quad E_{J}=\frac{\hbar^{2}}{2 I} J(J+1) \quad g_{J}=2 J+1$

The Wavefunctions

When both the Θ and Φ differential equations have been solved, the resulting wavefunctions are of the form:

$$
\psi(\theta, \varphi)=\Theta(\theta) \bullet \Phi(\varphi)=N_{\ell, m} e^{i m \varphi} P_{\ell}^{|m|}(\theta)
$$

The $P_{\ell}^{|m|}(\theta)$ are known as the associated Legendre polynomials.
The first few of these functions are given by:

$$
\begin{array}{ll}
P_{0}^{0}=1 & P_{2}^{0}=\frac{1}{2}\left(3 \cos ^{2}(\theta)-1\right) \\
P_{1}^{0}=\cos (\theta) & P_{2}^{1}=\frac{1}{2} \sin (\theta) \cos (\theta) \\
P_{1}^{1}=\sin (\theta) & P_{2}^{2}=\sin ^{2}(\theta)
\end{array}
$$

We will defer any visualization of these wavefunctions until we get to The Hydrogen Atom

Spherical Harmonics

The product functions of θ and ϕ are called "Spherical Harmonics", $Y_{\text {Im }}(\theta, \phi)$:

$$
Y_{l m}(\theta, \varphi)=\Theta(\theta) \bullet \Phi(\varphi)=N_{\ell m} e^{i m \varphi} P_{\ell}^{|m|}(\theta)
$$

They are the angular solutions to the Schrödinger Equation for any spherically symmetric potential; i.e. one in which $\mathrm{V}(\mathrm{r})$ is independent of the angles θ and ϕ.
Some examples are:

$$
\begin{aligned}
& Y_{11}(\theta, \varphi)=N_{11} 1^{i \varphi} P_{1}^{1}(\theta)=N_{11} e^{i \varphi} \sin (\theta) Y_{22}(\theta, \varphi)=N_{22} e^{2 i \varphi} P_{2}^{2}(\theta)=N_{22} e^{2 i \varphi} \sin ^{2}(\theta) \\
& Y_{10}(\theta, \varphi)=N_{10} e^{0 i \varphi} P_{1}^{0}(\theta)=N_{10} \cos (\theta) Y_{21}(\theta, \varphi)=N_{21} e^{i \varphi} P_{2}^{1}(\theta)=N_{21} e^{i \varphi} \sin (\theta) \cos (\theta) \\
& Y_{1-1}(\theta, \varphi)=N_{1-1} e^{-i \varphi} P_{1}^{1}(\theta)=N_{1-1} e^{-i \varphi} \sin (\theta) Y_{20}(\theta, \varphi)=N_{20} e^{0 i \varphi} P_{2}^{0}(0)=N_{20}\left(3 \cos ^{2}(\theta)-1\right) \\
& Y_{2-1}(\theta, \varphi)=N_{2-1}-e^{-i \varphi} P_{2}^{1}(\theta)=N_{2-1} e^{-i \varphi} \sin (\theta) \cos (\theta) \\
& Y_{2-2}(\theta, \varphi)=N_{2-2} e^{-2 i \varphi} P_{2}^{2}(\theta)=N_{2-2} e^{-2 i \varphi} \sin ^{2}(\theta) \\
& \text { Slide 29 }
\end{aligned}
$$

Example One of the Spherical Harmonics is: $Y(\theta, \varphi)=N e^{-i \varphi} \sin (\theta)$ Show that this function is an eigenfunction of the Rigid Rotor Hamiltonian and determine the eigenvalue (i.e. the energy).

$$
H Y=\frac{1}{2 I} L^{2} Y=E Y \quad \text { or } \quad-\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} Y}{\partial \varphi^{2}}\right]=E Y
$$

$$
\begin{aligned}
\frac{\partial Y}{\partial \theta}=N e^{-i \varphi} & \cos (\theta) \\
\frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial Y}{\partial \theta}\right) & =\frac{\partial}{\partial \theta}\left(N e^{-i \varphi} \sin (\theta) \cos (\theta)\right)=N e^{-i \varphi}\left[-\sin ^{2}(\theta)+\cos ^{2}(\theta)\right] \\
& =N e^{-i \varphi}\left[1-2 \sin ^{2}(\theta)\right]
\end{aligned}
$$

$$
\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial Y}{\partial \theta}\right)=\frac{N e^{-i \varphi}}{\sin (\theta)}-2 N e^{-i \varphi} \sin (\theta)
$$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} Y}{\partial \varphi^{2}}\right]=E Y \quad \frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial Y}{\partial \theta}\right)=\frac{N e^{-i \varphi}}{\sin (\theta)}-2 N e^{-i \varphi} \sin (\theta) \\
& Y(\theta, \varphi)=N e^{-i \varphi} \sin (\theta) \\
& \frac{\partial Y}{\partial \varphi}=-i N e^{-i \varphi} \sin (\theta) \\
& \frac{\partial^{2} Y}{\partial \varphi^{2}}=-N e^{-i \varphi} \sin (\theta) \\
& \frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} Y}{\partial \varphi^{2}}=\frac{-N e^{-i \varphi}}{\sin (\theta)}
\end{aligned}
$$

$$
\begin{aligned}
H Y & =-\frac{\hbar^{2}}{2 I}\left[\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2} Y}{\partial \varphi^{2}}\right] \\
& =-\frac{\hbar^{2}}{2 I}\left[\frac{\lambda e^{-i \varphi}}{\sin (\phi)}-2 N e^{-i \varphi} \sin (\theta)-\frac{\lambda e^{-i}}{\sin (\theta)}\right] \\
& =+\frac{\hbar^{2}}{2 I} 2\left[N e^{-i \varphi} \sin (\theta)\right]=+\frac{\hbar^{2}}{2 I} \cdot 2 Y
\end{aligned}
$$

$$
H Y=+\frac{\hbar^{2}}{2 I} \cdot 2 Y
$$

Therefore: $\quad E=2 \frac{\hbar^{2}}{2 I}$

Note: Comparing to: $\quad E_{\ell}=\frac{\hbar^{2}}{2 I} \ell(\ell+1)$
we see that: $\quad \ell=1$

3.7 Angular Momentum and the Rigid Rotor

The Spherical Harmonics, $\mathrm{Y}_{\mathrm{Im}}(\theta, \phi)$, are eigenfunctions of the angular momentum operators:

$$
\begin{aligned}
& L^{2}=-\hbar^{2}\left\{\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}}\right\} \\
& \hat{L}_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \varphi}
\end{aligned}
$$

The eigenvalues are given by the equations:

$$
\begin{aligned}
& \hat{L}^{2} Y_{l m}(\theta, \varphi)=\ell(\ell+1) \hbar^{2} Y_{l m}(\theta, \varphi) \\
& \hat{L}_{\imath} Y_{l m}(\theta, \varphi)=m \hbar Y_{l m}(\theta, \varphi)
\end{aligned}
$$

Note: It is straightforward to show that $\hat{\mathrm{L}}^{2}$ and $\hat{\mathrm{L}}_{\mathrm{z}}$ commute; i.e. $\left[\hat{L}^{2}, \hat{L}_{z}\right]=0$.

Because of this, it is possible to find simultaneous
eigenfunctions of the two operators which are, as shown above, the Spherical Harmonics.

As discussed earlier, the restrictions on the quantum numbers are given by:

$$
\begin{aligned}
& \ell=0,1,2,3, \ldots \\
& m=0, \pm 1, \pm 2, \ldots, \pm \ell
\end{aligned}
$$

Therefore, both the magnitude, $|\mathrm{L}|$, and the z-component, L_{z}, of the angular momentum are quantized to the values:

$$
\begin{aligned}
& |L|=\sqrt{\ell(\ell+1} \hbar \quad \ell=0,1,2,3, \ldots \\
& L_{z}=m \hbar \quad m=0, \pm 1, \pm 2, \ldots, \pm \ell
\end{aligned}
$$

If a magnetic field is applied, its direction defines the z-axis.

If there is no magnetic field, the z-direction is arbitrary.

One of the Spherical Harmonics is: $Y(\theta, \varphi)=N e^{-i \varphi} \sin (\theta)$
Show that this function is an eigenfunction of \hat{L}^{2} and \hat{L}_{z} and determine the eigenvalues.
$L^{2}=-\hbar^{2}\left\{\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}}\right\} \quad \hat{L}_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \varphi}$

We've actually done basically the first part a short while ago.
Remember: $H Y=\frac{1}{2 I} L^{2} Y=E Y=2 \frac{\hbar^{2}}{2 I} Y$
Therefore: $L^{2} Y=2 \hbar^{2} Y=\ell(\ell+1) \hbar^{2} Y \longrightarrow \ell=1$

$$
\begin{array}{r}
\hat{L}_{z} Y=\frac{\hbar}{i} \frac{\partial Y}{\partial \varphi}=\frac{\hbar}{i}(-i) N e^{-i \varphi} \sin (\theta)=-\hbar Y=m \hbar Y \\
m=-1
\end{array}
$$

Just keep in mind: The Hydrogen Atom Schrödinger Equation

3D Schrödinger Equation in Spherical Polar Coordinates
$-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]+V \psi=E \psi$
The Hydrogen atom is an example of a "centrosymmetric" system, which is one in which the potential energy is a function of only $r, V(r)$. In this case, the Schrödinger equation can be rearranged to:
$\left[-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+V(r) \psi\right]-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} \psi}{\partial \varphi^{2}}\right]=E \psi$
Radial Part Angular Part

Note that the Angular part of the Hydrogen atom Schrödinger equation is the same as Rigid Rotor equation, for which the radial part vanishes.

Therefore, the angular parts of the Hydrogen atom wavefunctions are the same as those of the Rigid Rotor

3.8 Application of Angular momentum

Rotational Spectroscopy of Linear Molecules

Rotational Spectroscopy of Linear Molecules

\[

\]

Note: You must use c in cm/s, even when using MKS units.

Diatomic versus Linear Polyatomic Molecules

$$
\tilde{B}=\frac{h}{8 \pi^{2} I c}
$$

In general, for linear molecules, the moment of inertia is given by:

$$
I=\sum_{i=1}^{N} m_{i} r_{i}^{2}
$$

N is the number of atoms m_{i} is the mass of the atom i
r_{i} is the distance of atom i from the Center of Mass.

If $\mathrm{N}=2$ (diatomic molecule) the moment of inertia reduces to:

$$
\begin{gathered}
I=\mu r^{2} \\
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \text { where } \quad \mathrm{r} \text { is the interatomic distance }
\end{gathered}
$$

Selection Rules

Absorption (Microwave) Spectroscopy

For a rotating molecule to absorb light, it must have a permanent dipole moment, which changes direction with respect to the electric vector of the light as the molecule rotates.

$$
\Delta \mathrm{J}= \pm 1 \quad(\Delta \mathrm{~J}=+1 \quad \text { for absorption })
$$

e.g. $\mathrm{HCl}, \mathrm{OH}$ (radical) and $\mathrm{O}=\mathrm{C}=\mathrm{S}$ will absorb microwave radiation. $\mathrm{O}=\mathrm{C}=\mathrm{O}$ and $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ will not absorb microwave radiation.

Rotational Raman Spectroscopy

For a rotating molecule to have a Rotation Raman spectrum, the polarizability with respect to the electric field direction must change as the molecule rotates. All linear molecules have Rotational Raman spectra.

$$
\begin{gathered}
\Delta \mathrm{J}= \pm 2 \\
\Delta \mathrm{~J}=+2: \text { Excitation (Stokes line) } \\
\Delta \mathrm{J}=-2: \text { Deexcitation (Anti-Stokes line) }
\end{gathered}
$$

Intensity of Rotational Transitions

The intensity of a transition in the absorption (microwave) or Rotational Raman spectrum is proportional to the number of molecules in the initial state (J"); i.e. Int. $\propto N_{J "}$
Boltzmann Distribution: $\quad N_{J^{\prime \prime}} \propto g_{J^{\prime \prime}} e^{-\frac{E_{J^{\prime \prime}}}{k T}}$

$$
N_{J^{\prime \prime}} \propto\left(2 J^{\prime \prime}+1\right) e^{-\frac{h c \tilde{B} J^{\prime \prime}\left(J^{\prime \prime}+1\right)}{k T}}
$$

Rotational Spectra

Absorption (Microwave) Spectra

$$
\begin{gathered}
J^{\prime \prime} \rightarrow J^{\prime} \\
\Delta E=E_{J^{\prime}}-E_{J^{\prime \prime}} \\
\Delta E=h c \tilde{B} J^{\prime}\left(J^{\prime}+1\right)-h c \tilde{B} J^{\prime \prime}\left(J^{\prime \prime}+1\right) \\
J^{\prime}=J^{\prime \prime}+1 \\
\Delta E=h c \tilde{B}\left(J^{\prime \prime}+1\right)\left(J^{\prime \prime}+2\right)-h c \tilde{B} J^{\prime \prime}\left(J^{\prime \prime}+1\right) \\
\Delta E=h c \tilde{B}\left(2 J^{\prime \prime}+2\right) \quad J^{\prime \prime}=0,1,2,3, \ldots \\
\tilde{v}=\frac{\Delta E}{h c}=\tilde{B}\left(2 J^{\prime \prime}+2\right) \quad J^{\prime \prime}=0,1,2,3, \ldots \\
\left.\frac{\mid}{0} \frac{\mid}{2 \tilde{B}} \quad 4 \tilde{\mathrm{~B}} \tilde{\tilde{v}} \quad \right\rvert\, \\
6 \tilde{\mathrm{~B}} \quad \mid \\
8 \tilde{\mathrm{~B}}
\end{gathered}
$$

Rotational Raman Spectra

$$
\begin{gathered}
J^{\prime \prime} \rightarrow J^{\prime} \\
\Delta E=E_{J^{\prime}}-E_{J^{\prime \prime}}
\end{gathered}
$$

$$
\Delta E=h c \tilde{B} J^{\prime}\left(J^{\prime}+1\right)-h c \tilde{B} J^{\prime \prime}\left(J^{\prime \prime}+1\right)
$$

$$
J^{\prime}=J^{\prime \prime}+2
$$

$\Delta E=h c \tilde{B}\left(J^{\prime \prime}+2\right)\left(J^{\prime \prime}+3\right)-h c \tilde{B} J^{\prime \prime}\left(J^{\prime \prime}+1\right)$
$\Delta E=h c \tilde{B}\left(4 J^{\prime \prime}+6\right) \quad J^{\prime \prime}=0,1,2,3, \ldots$

$$
\tilde{v}=\frac{\Delta E}{h c}=\tilde{B}\left(4 J^{\prime \prime}+6\right) \quad J^{\prime \prime}=0,1,2,3, \ldots
$$

The HCl bond length is 0.127 nm .
Calculate the spacing between lines in the rotational microwave absorption spectrum of $\mathrm{H}-{ }^{35} \mathrm{CI}$, in cm^{-1}.
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\mu=\frac{m_{H} m_{C l}}{m_{H}+m_{C l}} \frac{(1 \mathrm{amu})(35 \mathrm{amu})}{1 \mathrm{amu}+35 \mathrm{amu}}=0.972 \mathrm{amu}$ c $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{c}=3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$\mu=0.972 \mathrm{amu} \cdot \frac{1.66 \times 10^{-27} \mathrm{~kg}}{1 \mathrm{amu}}=1.61 \times 10^{-27} \mathrm{~kg}$
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$
$I=\mu r^{2}=\left(1.61 \times 10^{-27} \mathrm{~kg}\right)\left(0.127 \times 10^{-9} \mathrm{~m}\right)^{2}=2.60 \times 10^{-47} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\tilde{B}=\frac{h}{8 \pi^{2} I c}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{8(3.14)^{2}\left(2.60 \times 10^{-47} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)}=10.78 \mathrm{~cm}^{-1} \approx 10.8 \mathrm{~cm}^{-1}$
As discussed above, microwave absorption lines occur at $2 \tilde{\mathrm{~B}}, 4 \tilde{\mathrm{~B}}, 6 \tilde{\mathrm{~B}}, \ldots$
Therefore, the spacing is $2 B$

$$
\text { Spacing }=2 \tilde{B}=2 \times 10.8=21.6 \mathrm{~cm}^{-1}
$$

Calculate the ratio of intensities (at $25^{\circ} \mathrm{C}$): $\frac{\boldsymbol{I}_{3 \rightarrow 4}}{\boldsymbol{I}_{1 \rightarrow 2}}$

$$
\begin{aligned}
& \mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \mathrm{c}=3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s} \\
& \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \tilde{\mathrm{~B}}=10.8 \mathrm{~cm}^{-1}
\end{aligned}
$$

$$
\begin{align*}
& \frac{I_{3 \rightarrow 4}}{I_{1 \rightarrow 2}}=\frac{N_{3}}{N_{1}}=\frac{g_{3} e^{-E_{3} / k T}}{g_{1} e^{-E_{1} / k T}}=\frac{7 e^{-12 h c \tilde{B} / k T}}{3 e^{-2 h c \tilde{B} / k T}}=\frac{7}{3} e^{-10 h c \tilde{B} / k T} \tag{2}\\
& \frac{I_{3 \rightarrow 4}}{I_{1 \rightarrow 2}}=\frac{7}{3} e^{-0.52} \approx 1.4
\end{align*}
$$

0
$g_{1}=3$

$$
\frac{10 h c \tilde{B}}{k T}=\frac{10\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)\left(10.8 \mathrm{~cm}^{-1}\right)}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(298 \mathrm{~K})}=0.52
$$

Note: This is equivalent to asking for the ratio of intensites of fourth line to the second line in the rotational microwave spectrum.

The first 3 Stokes lines in the rotational Raman spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$ are found at $2.34 \mathrm{~cm}^{-1}$, $3.90 \mathrm{~cm}^{-1}$ and $5.46 \mathrm{~cm}^{-1}$.

Calculate the $\mathrm{C}=\mathrm{O}$ bond length in CO_{2}, in nm .
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ c $=3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$

$$
2.34 \mathrm{~cm}^{-1}=6 \tilde{B}-0=6 \tilde{B} \longrightarrow \tilde{B}=0.39 \mathrm{~cm}^{-1}
$$

$$
3.90 \mathrm{~cm}^{-1}=12 \tilde{B}-2 \tilde{B}=10 \tilde{B} \rightarrow \tilde{B}=0.39 \mathrm{~cm}^{-1}
$$

$$
5.46 \mathrm{~cm}^{-1}=20 \tilde{B}-6 \tilde{B}=14 \tilde{B} \rightarrow \tilde{B}=0.39 \mathrm{~cm}^{-1}
$$

$$
\tilde{B}=\frac{h}{8 \pi^{2} I c} \quad \longrightarrow \quad I=\frac{h}{8 \pi^{2} \tilde{B} c}
$$

$$
I=\frac{6.63 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{8(3.14)^{2}\left(0.39 \mathrm{~cm}^{-1}\right)\left(3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)}=7.18 \times 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

The first 3 Stokes lines in the rotational Raman spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$ are found at $2.34 \mathrm{~cm}^{-1}$, $3.90 \mathrm{~cm}^{-1}$ and $5.46 \mathrm{~cm}^{-1}$.

Calculate the $\mathrm{C}=\mathrm{O}$ bond length in CO_{2}, in nm .
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ c $=3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$

$$
\begin{aligned}
& I=7.18 \times 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& I=\sum_{i} m_{i} r_{i}^{2}=m_{0} r_{C O}^{2}+m_{c}(0)^{2}+m_{0} r_{C O}^{2}=2 m_{0} r_{C O}^{2}
\end{aligned}
$$

$r_{C O}=\sqrt{\frac{I}{2 m_{O}}}$

$$
\begin{aligned}
m_{o} & =16 \mathrm{amu} \cdot 1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{amu} \\
& =2.66 \times 10^{-26} \mathrm{~kg}
\end{aligned}
$$

$r_{C O}=\sqrt{\frac{7.18 \times 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2}}{2 \cdot 2.66 \times 10^{-26} \mathrm{~kg}}}=1.16 \times 10^{-10} \mathrm{~m}=0.116 \mathrm{~nm}=1.16 \mathrm{Ang}$ strom s

Calculate the initial state (i.e. J") corresponding to the most intense line in the rotational Raman spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$ at $25^{\circ} \mathrm{C}$.
Hint: Rather than calculating the intensity of individual $h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ transitions, assume that the intensity is a continuous $\quad \mathrm{C}=3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ function of J " and use basic calculus.
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\tilde{B}=0.39 \mathrm{~cm}^{-1}$

N_{J} is at a maximum for $\mathrm{dN}_{\mathrm{J} /} / \mathrm{dJ} "=0$.

$$
\begin{aligned}
\frac{d N_{J^{\prime \prime}}}{d J^{\prime \prime}}=0 & =\left(2 J^{\prime \prime}+1\right) \frac{d}{d J^{\prime \prime}}\left(e^{-\alpha\left(J^{\prime 2}+J^{\prime \prime}\right)}\right)+\left(e^{-\alpha\left(J^{\prime 2}+J^{\prime \prime}\right)}\right) \frac{d}{d J^{\prime \prime}}\left(2 J^{\prime \prime}+1\right) \\
0 & =\left(2 J^{\prime \prime}+1\right)\left(e^{-\alpha\left(J^{\prime 2}+J^{\prime \prime}\right)}\right)(-\alpha)\left(2 J^{\prime \prime}+1\right)+\left(e^{-\alpha\left(J^{\prime 2}+J^{\prime \prime}\right)}\right) \cdot 2 \\
0 & =\left(e^{-\alpha\left(J^{\prime 2}+J^{\prime \prime}\right)}\right)\left[-\alpha\left(2 J^{\prime \prime}+1\right)^{2}+2\right]
\end{aligned}
$$

$$
0=\left(e^{-\alpha\left(J^{\prime 2}+J^{\prime \prime}\right)}\right)\left[-\alpha\left(2 J^{\prime \prime}+1\right)^{2}+2\right] \quad \alpha=\frac{h c \tilde{B}}{k T} \quad \begin{aligned}
& \mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \mathrm{c}=3.00 \times 10^{-10} \mathrm{~cm} / \mathrm{s} \\
& \\
& \\
& \\
& \\
& \\
& \tilde{\mathrm{~B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
&
\end{aligned}
$$

Therefore: $\left[-\alpha\left(2 J^{\prime \prime}+1\right)^{2}+2\right]=0 \longrightarrow 2 J^{\prime \prime}+1=\sqrt{\frac{2}{\alpha}}$

$$
\begin{gathered}
2 J^{\prime \prime}+1=\sqrt{\frac{2\left(1.38 \times 10^{-23} J / K\right)(298 \mathrm{~K})}{\left(6.63 \times 10^{-34} J \cdot s\right)\left(3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)\left(0.39 \mathrm{~cm}^{-1}\right)}}=\sqrt{1060}=32.6 \\
J^{\prime \prime}=\frac{32.6-1}{2}=15.8 \approx 16
\end{gathered}
$$

Consider the linear molecule, $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Cl}$.
There are two major isotopes of chlorine, ${ }^{35} \mathrm{Cl}$ ($\sim 75 \%$) and ${ }^{37} \mathrm{Cl}(\sim 25 \%)$. Therefore, one will observe two series of lines in the rotational spectrum, resulting from transitions of
$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-{ }^{35} \mathrm{Cl}$ and $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-{ }^{37} \mathrm{Cl}$.
Can the structure of $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Cl}$ be determined from these two series?

No. There are 3 bond distances to be determined, but only 2 moments of inertia.

What additional information could be used to determine all three bond distances?

The spectrum of $\mathrm{D}-\mathrm{C} \equiv \mathrm{C}^{35} \mathrm{Cl}$ and $\mathrm{D}-\mathrm{C} \equiv \mathrm{C}^{37} \mathrm{Cl}$

3.9 The ladder operators

In general, assume L_{x}, L_{y} and L_{z} are operators with communications Relations:

$$
\begin{aligned}
& {\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar L_{z}\left[\hat{L}_{y}, \hat{L}_{x}\right]=-i \hbar L_{z} \quad\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar L_{x}\left[\hat{L}_{z}, \hat{L}_{y}\right]=-i \hbar L_{x}} \\
& {\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar L_{y}\left[\hat{L}_{x}, \hat{L}_{z}\right]=-i \hbar L_{y}} \\
& {\left[\hat{L}_{x}, L^{2}\right]=\left[\hat{L}_{y}, L^{2}\right]=\left[\hat{L}_{z}, L^{2}\right]=0} \\
& \quad L^{2}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}
\end{aligned}
$$

Then we can introduce a new operators

$$
\begin{array}{ll}
\mathrm{L}_{+}=\hat{L}_{x}+i \hat{L} y & \text { Raising Operator } \\
\mathrm{L}_{-}=\hat{L}_{x}-i \hat{L} y & \text { Lowering Operator }
\end{array}
$$

Properties of Ladder operators

1) $L_{+} \hat{L}_{-}=L^{2}-L_{z}^{2}+\hbar L_{z}$
2) $\left[L_{+}, L_{z}\right]=-\hbar L_{+}$
if $L^{2} Y(\theta, \phi)=c Y(\theta, \phi) \quad$ and $\quad L_{z} Y(\theta, \phi)=b Y(\theta, \phi)$
then
3) $L_{z} M_{+} Y(\theta, \phi)=(b+\hbar) L_{+} Y(\theta, \phi)$

Operating on the eigenfunction Y with raising operator L_{+}convert Y into another eigenfunction of $L z$ with Eigen value \hbar higher than the eigen value of Y

Properties of Ladder operators

$$
\begin{aligned}
& \text { 2) } L_{z} L_{+}^{2} Y(\theta, \phi)=(b+2 \hbar) L_{+}^{2} Y(\theta, \phi) \\
& L_{z} L_{+}^{k} Y(\theta, \phi)=(b+k \hbar) L_{+}^{k} Y(\theta, \phi) \\
& \text { 3) } L_{z} L_{-} Y(\theta, \phi)=(b-\hbar) L_{-} Y(\theta, \phi) \\
& \\
& L_{z} L_{-}^{k} Y(\theta, \phi)=(b-k \hbar) L_{-}^{2} Y(\theta, \phi) \\
& \\
& L_{z} L_{ \pm}^{k} Y(\theta, \phi)=(b \pm k \hbar) L_{ \pm}^{2} Y(\theta, \phi) \\
& \\
& \\
& L^{2} L_{ \pm}^{k} Y(\theta, \phi)=c L_{ \pm}^{k} Y(\theta, \phi) \\
& \text { 4) } \quad L_{Z} Y_{\max }(\theta, \phi)=b_{\max } Y_{\max }(\theta, \phi) \\
& \\
& \\
& L_{+} Y_{\max }(\theta, \phi)=z e r o \\
& L_{-} Y_{\min }(\theta, \phi)=z e r o
\end{aligned}
$$

remmber $L^{2} Y(\theta, \phi)=(j(j+1)) \hbar^{2} Y(\theta, \phi)$

$$
L_{z} Y(\theta, \phi)=m_{j} \hbar Y(\theta, \phi)
$$

Important Notes

$$
\begin{gathered}
\{A\} \\
L^{2} Y(\theta, \phi)=(j(j+1)) \hbar^{2} Y(\theta, \phi) \\
j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}, 4, \ldots . \\
m_{l}=-j, \ldots .0, . .+j \\
L_{z} Y(\theta, \phi)=m_{j} \hbar Y(\theta, \phi)
\end{gathered}
$$

$$
\begin{gathered}
\{\mathbf{B}\} \\
L^{2} Y(\theta, \phi)=(l(l+1)) \hbar^{2} Y(\theta, \phi) \\
l=0,1,2,3,4, \ldots \\
m_{l}=-l, \ldots .0, . .+l \\
L_{z} Y(\theta, \phi)=m_{l} \hbar Y(\theta, \phi)
\end{gathered}
$$

Comparison of A with B show that in addition to the integrated values of Angular momentum quantum mechanics ($l=0,1,2,3, \ldots$) we have a possibility for half integrated values ($\mathrm{j}=0,1 / 2,1,3 / 2,2, \ldots$) mean we have another kind of Angular momentum ,beside the orbital Angular momentum, I) can have half integral as well as integral called Spin Angular momentum

Properties of Ladder operators

Find the following:

1) $L_{+} \hat{L}_{-}$
2) $\quad L_{-} \hat{L}_{+}$
3) $\left[L_{+}, L_{z}\right]$
4) $\left[L_{z}, L_{-}\right]$
5)Later find

Spin angular momentum (SPIN)

An electron spin $s=1 / 2$ is an intrinsic property of electrons. Electrons have intrinsic angular momentum characterized by quantum number $1 / 2$.

Experimental evidence like the hydrogen fine structure and the Stern-Gerlach experiment suggest that an electron has an intrinsic angular momentum, independent of its orbital angular momentum. These experiments suggest just two possible states for this angular momentum, and following the pattern of quantized angular momentum, this requires an angular momentum quantum number of $1 / 2$.

The quantum numbers associated with electron spin follow the characteristic pattern:
$S=\sqrt{s(s+1)} \hbar, \quad s=\frac{1}{2}$ and $m_{s= \pm \frac{1}{2}}$
Example: An electron spin $s=1 / 2$ is an intrinsic property of electrons. Electrons have intrinsic angular momentum characterized by quantum number $1 / 2$. In the pattern of other quantized angular momenta, this gives total angular momentum $S=\sqrt{s(s+1} \hbar$ if $s=1 / 2$ so $S=\frac{\sqrt{3}}{2} \hbar$
the resulting fine structure which is observed corresponds to two possibilities for the z-component of the angular momentum.

$$
S_{Z}= \pm \frac{1}{2} \hbar
$$

Spin "up" and
"down" allows two electrons for each set of spatial
quantum numbers.
n. I, ml

Spin-Orbit Interaction

The energy levels of atomic electrons are affected by the interaction between the electron spin magnetic moment and the orbital angular momentum of the electron. It can be visualized as a magnetic field caused by the electron's orbital motion interacting with the spin magnetic moment. This effective magnetic field can be expressed in terms of the electron orbital angular

The interaction energy is of the form

$$
E=\vec{\mu} \cdot \vec{B}
$$

like a magnet in an applied magnetic field.

 momentum.
The interaction energy is that of a magnetic dipole in a magnetic field and takes the form. When atomic spectral lines are split by the application of an external magnetic field, it is called the Zeeman effect. The spin-orbit interaction is also a magnetic interaction, but with the magnetic field generated by the orbital motion of an electron within the atom itself. It has been described as an "internal Zeeman effect

